

CDF and DØ Heavy Flavor Studies

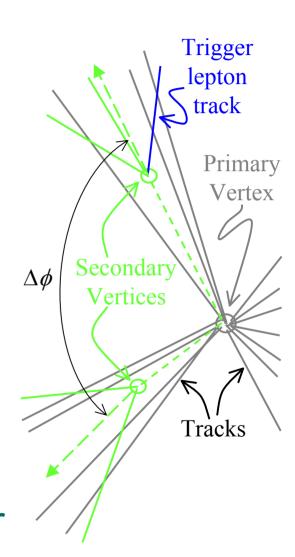
- •Preliminary CDF Run I B Correlation Results
- •Preliminary CDF Run II Direct Charm Cross Section
- •Preliminary DØ Run II b-jet Cross Section
- •Preliminary DØ and CDF Run II J/ψ Cross Section

Kevin Lannon (University of Illinois, CDF) for the CDF and DØ Collaborations

CDF B Hadron Correlations (Run I)

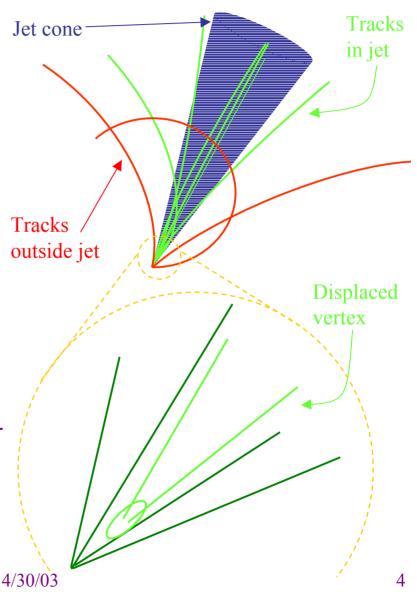
- Measurement of $\Delta \phi$ using secondary vertex tags
 - $\Delta \phi$ = "transverse opening angle," angle between B hadrons in plane perpendicular to beams
 - Secondary vertex tags
 - Track-based reconstruction of B decay points
 - Allows sensitivity at small opening angles

Motivation


- Explore $\Delta \phi$ distribution at small opening angles
 - Previous measurements not sensitive in this region
 - Higher order contributions (gluon splitting and flavor excitation) important at small opening angles
- Compare measured data to leading-log Monte Carlo predictions (PYTHIA and HERWIG)

Secondary Vertex Tag Correlations

- Sample enhanced in B content
 - 8 GeV electron and muon triggers
 - B hadron p_T ≈ 14 GeV/c
- Reconstruct both B decay vertices
 - Trigger lepton within $\Delta R = 1.0$ of one vertex tag
 - Non-trigger B hadron p_T ≈ 7.5 GeV/c
- Use angle between p_T vectors to measure $\Delta\phi$
- Compare to Monte Carlo predictions
- Remove backgrounds and correct for detector effects



Secondary Vertex Tagging

Locate the event primary vertex to _{Jet cone} within ~17 μm (on average)

- Organizes tracks into jets using a cone of $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 1.0$
- Searches each jet for one or more displaced secondary vertices in two passes
 - Pass 1: require 3+ track vertices
 - Pass 2: 2 track vertices, tighter cuts
- Additional requirements
 - Displaced from primary by at least 2σ
 - Separated from other secondary vertices by at least 2σ

Backgrounds

Mistags

- Random combination of tracks form a vertex
- Subtract statistically using L_{xy} (signed 2-D decay distance), similar to sideband subtraction

Prompt Charm production

- One or more tags coming from prompt D decay
- $c\overline{c}$ (tag both *D* hadrons) and $b\overline{b}$ + $c\overline{c}$ (tag *B* and *D*)
- Estimated to be no more than 10% contribution from MC and data

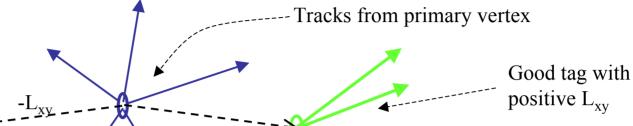
Sequential Double-Tags

- Tag same B decay twice (often from $B \to D \to X$)
- Mostly eliminated by 6 GeV/c² tag pair mass cut
- Negligible residual contribution estimated from MC

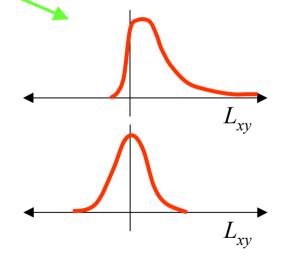
After mistag subtraction

- > 90% $b\bar{b}$ purity (most of rest is $c\bar{c}$ and $b\bar{b}$ + $c\bar{c}$)
- 17,000 double-tagged events in electron and muon samples combined

Potentially


fake tag with

negative L_{xv}


Mistag Subtraction

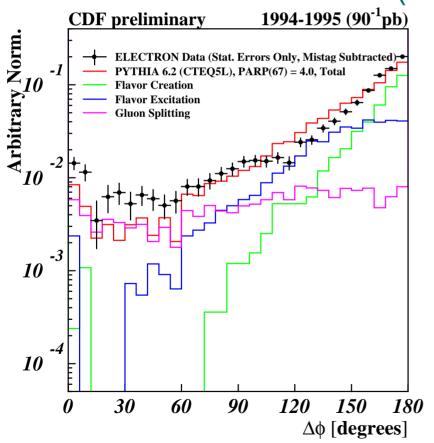
- L_{xy} is the distance between vertex and primary in x-y plane
- Good Tags: mostly $L_{xy} > 0$
- Mistags: equally likely to have positive or negative L_{xv}
- Use distributions from negative tags to subtract mistag component

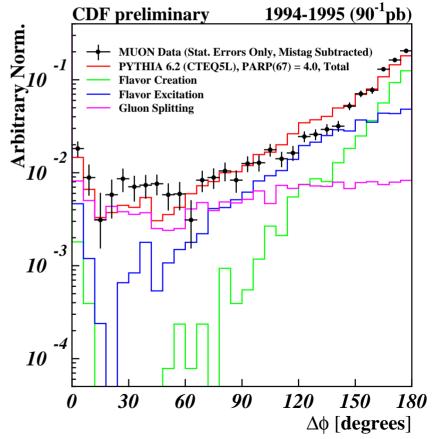
Monte Carlo Samples

- PYTHIA 6.2 with different amounts of initial-state radiation
 - PARP(67) = 4.0 (higher ISR, default before version 6.138)
 - PARP(67) = 3.0 (intermediate ISR)
 - PARP(67) = 1.0 (lower ISR, default after version 6.138)
 - Used Rick Field's tuning for underlying event
- HERWIG 6.4 sample, mostly default parameters
- All use CTEQ5L parton distribution functions
- Use default PYTHIA and HERWIG fragmentation models
- Use QQ for B decays
- Special care taken to generate all three production mechanisms (over 1.3 billion events generated total)
- Use detector simulation, trigger simulation to make MC look as much like data as possible
- Processed through reconstruction and analysis code, just like data.

Comparisons between MC and Data

- Monte Carlo and data treated the same way (analysis code, mistag subtraction, etc.)
- Normalization between data and MC:
 - "Fixed" Normalization
 - Relative normalization of three production mechanisms (flavor creation, flavor excitation, and gluon splitting) fixed to MC prediction
 - Overall normalization varied to get best match to data
 - "Floating" Normalization
 - Normalization of each production mechanism varied to get best match to shape in data

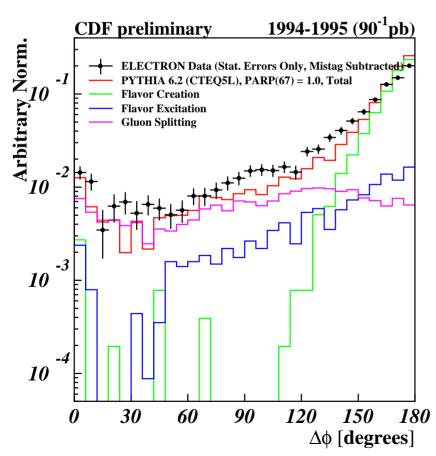

Comparisons with PYTHIA, PARP(67) = 4.0 (more ISR)

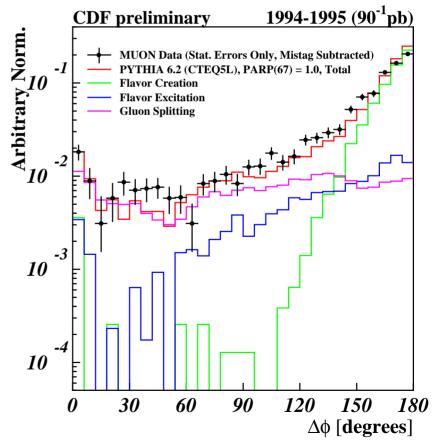


Normalization fixed to PYTHIA predictions

MC broader than data near $\Delta \phi = 180^{\circ}$

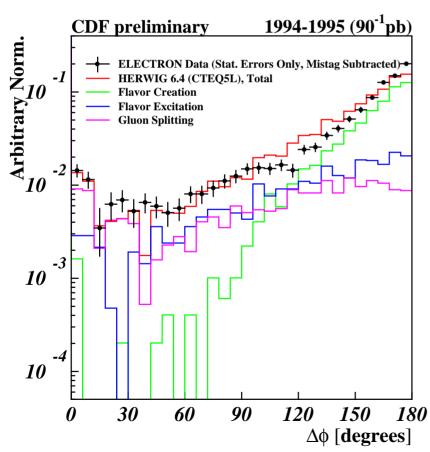
PARP(67) = 3.0 similar

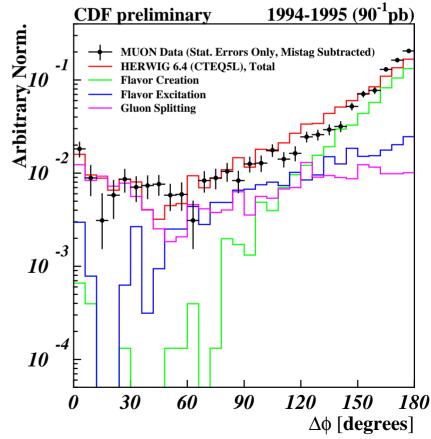




Comparisons with PYTHIA, PARP(67) = 1.0 (less ISR)

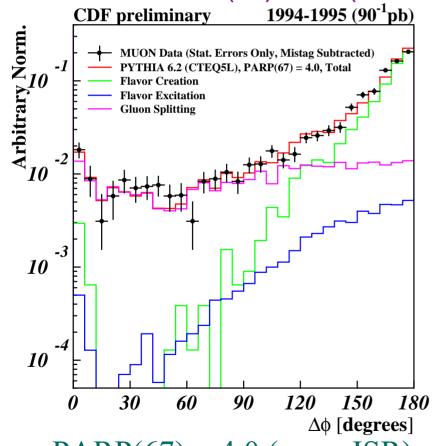
Normalization fixed to PYTHIA predictions MC more narrow than data near $\Delta \phi = 180^{\circ}$



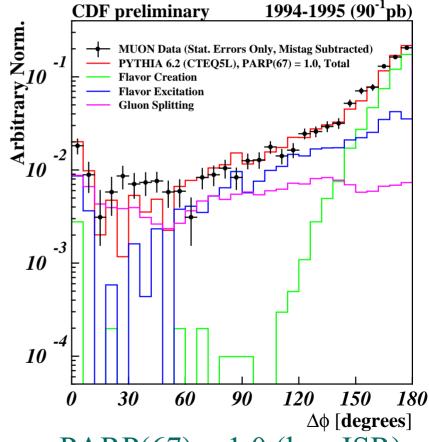


Comparisons with HERWIG

Normalization fixed to HERWIG predictions MC broader than data near $\Delta \phi = 180^{\circ}$



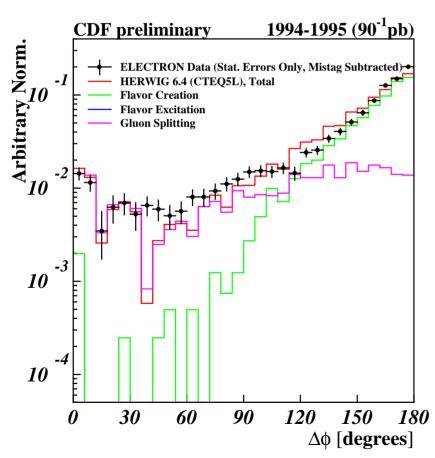
PYTHIA Comparisons with Floating Normalizations

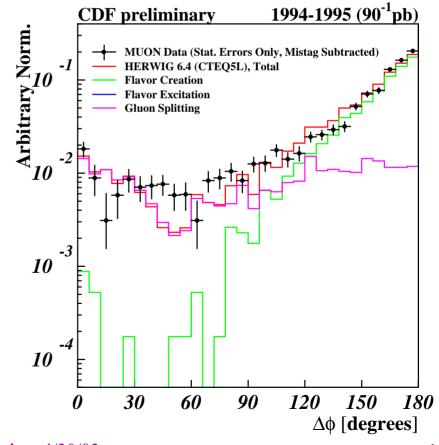


PYTHIA does surprisingly well with PARP(67) = 4.0 or 1.0

- PARP(67) = 4.0 (more ISR) has less flavor excitation
- PARP(67) = 1.0 (less ISR) has more flavor excitation

PARP(67) = 4.0 (more ISR)

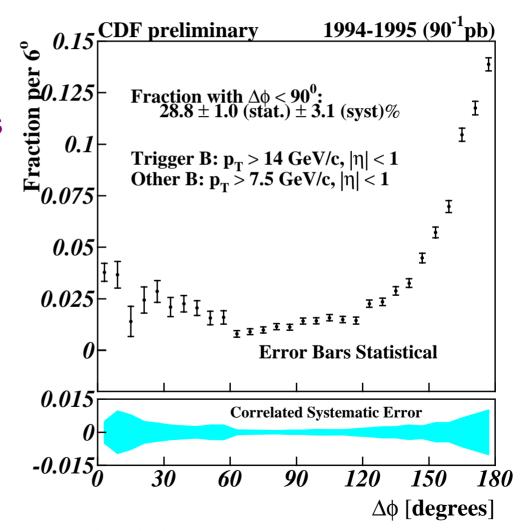

PARP(67) = 1.0 (less ISR)



HERWIG with Floating Normalizations

MC still broader than data near $\Delta \phi$ = 180° Flavor excitation contribution reduced to zero in fit

Corrected Data



Use MC to correct data

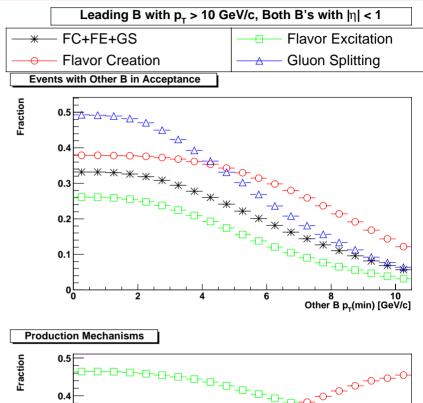
- Relative efficiency
- Prompt charm
- Sequential double-tags
- Similar to preliminary results from J/ψ + lepton analysis
 - Tag one B with J/ψ
 - Tag other with lepton
 - Result:

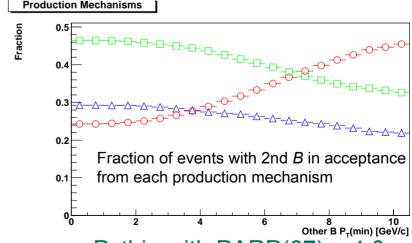
$$\frac{N(\Delta\phi < 90^{\circ})}{N(\Delta\phi > 90^{\circ})} = 0.52 \pm 0.21$$

Combined electron and muon data

Important for *B* Mixing Measurements

MC Tuning Workshop 4/30/03


Flavor tagging

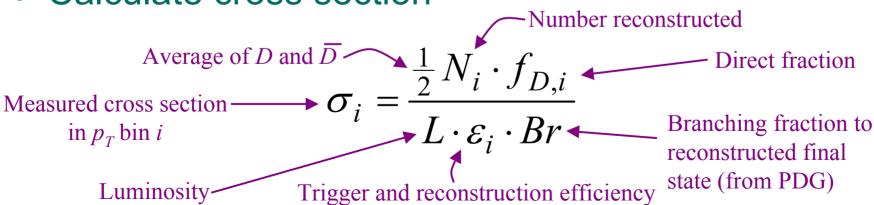

- Same-side: use info from b fragmentation
- Opposite-side: use info from decay of other b

Correlations

- How often are both B hadrons in same jet?
- Where should one look for the other B hadron?
- Acceptance: Is the other B even in the event?

 $A = \frac{N(\text{more than one in central region})}{N(\text{one in central region})}$

CDF Direct Charm Cross Sections (Run II)


- Measure the cross section for D⁰, D⁺, D^{*0}, and D_s⁺ using fully reconstructed decays
- Possible because of secondary vertex trigger (SVT)
 - Uses information from the silicon vertex detector to trigger on tracks with large impact parameter with respect to primary vertex
 - Provides a large sample of fully reconstructed D decays
 - Not possible in Run I!
- Motivation
 - No published direct charm cross section from CDF Run I
 - Is the discrepancy seen in the bottom cross section also seen for charm?

Analysis Overview

- Fully reconstruct and count charm mesons in p_T bins
- Measure direct charm fraction
 - Direct = produced directly by $p\bar{p}$ collision
 - Secondary = from B decays
- Determine trigger and reconstruction efficiencies
- Determine Luminosity
- Calculate cross section

Signal Reconstruction

Large, clean signals with small statistical and systematic uncertainties

Data: 5.8 pb⁻¹ from Feb-Mar 2002 (only a small fraction of data now available!)

$$D^{0} \to K^{-}\pi^{+}$$


$$D^{*+} \to D^{0}\pi^{+}$$

$$D^{0} \to K^{-}\pi^{+}$$

$$D^{+} \to K^{-}\pi^{+}\pi^{+}$$

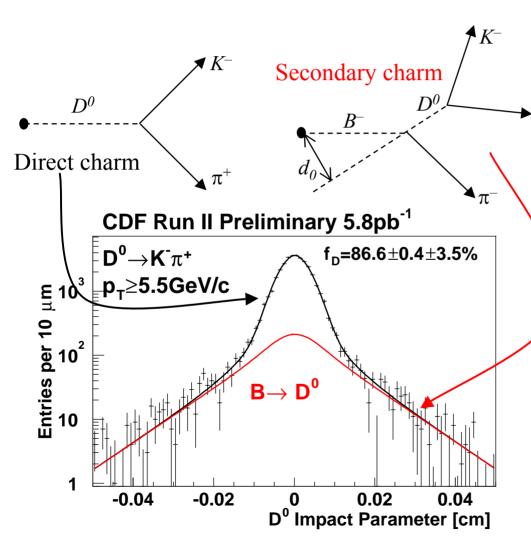
$$D_{s}^{+} \to \phi\pi^{+}$$

$$\phi \to K^{-}K^{+}$$

Minimum p_T , L_{xv} cuts imposed, No PID used

p_т≥ 8GeV/c

 $N(D_s^+) = 851 \pm 43$


 $M(KK\pi)$ [GeV/c²]

Separating Direct and Secondary Charm

Fraction determined by fitting impact parameter distribution

Direct Charm

- Points at I.P. within resolution
- Distribution determined from K_s⁰ decays

Secondary Charm

- Broader d₀ distribution
- Distribution determined from MC convoluted with d₀ resolution

Direct Charm Fractions

- *D*⁰: 86.5±0.4 ±3.5%
- D*+: 88.1±1.1 ±3.9%
- D+: 89.1±0.4 ±2.8%
- D_s^+ : 77.3±4.0 ±3.5%

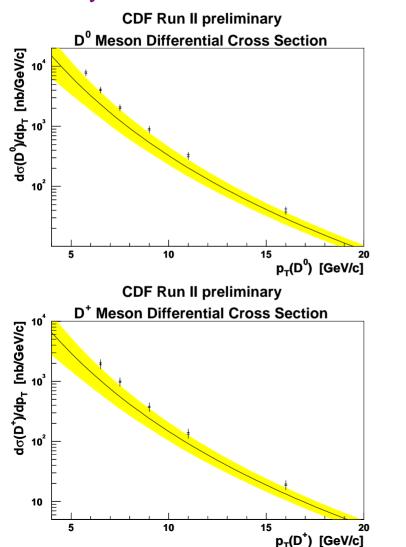
Trigger and Reconstruction Efficiency

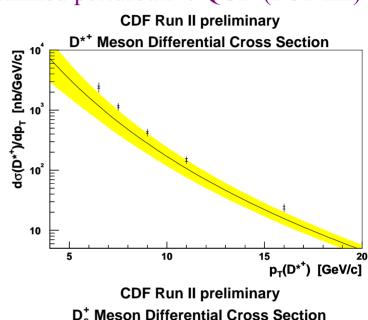
- Use data to measure single track efficiencies
 - XFT and SVT (trigger)
 - SVX and COT (tracking)
 - Dependence on correlations between two trigger tracks
- Use single-track efficiencies to create parameterized detector simulation
- Calculate ε for each p_T bin using NLO MC and parameterized detector simulation
 - Reweight MC so $D p_T$ distribution matches data
 - Include Dalitz structure for $D^+ \to K^- \pi^+ \pi^+$

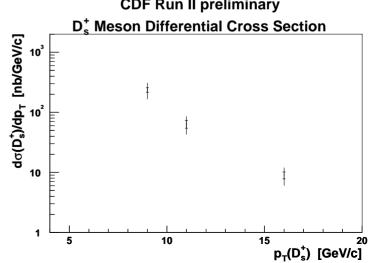
Integrated Cross Sections

- For all cross sections, |y(D)| ≤ 1
- Summed over all p_T bins, we get
 - $\sigma(D^0, p_T \ge 5.5 \text{ GeV/c}) = 13.3 \pm 0.2 \pm 1.5 \text{ }\mu\text{b}$
 - $\sigma(D^{*+}, p_T \ge 6.0 \text{ GeV/c}) = 5.2 \pm 0.1 \pm 0.8 \text{ }\mu\text{b}$
 - $\sigma(D^+, p_T \ge 6.0 \text{ GeV/c}) = 4.3 \pm 0.1 \pm 0.7 \text{ }\mu\text{b}$
 - $\sigma(D_s^+, p_T \ge 8.0 \text{ GeV/c}) = 0.75 \pm 0.05 \pm 0.22 \text{ µb}$

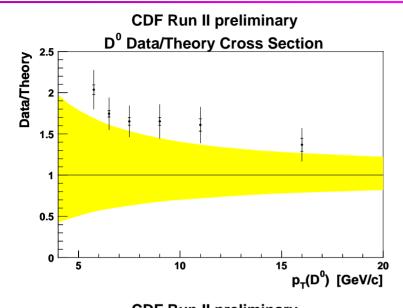
PDG 2002 Branching Ratios

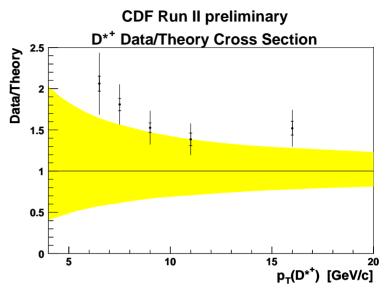

$$\sigma_{i} = \frac{\frac{1}{2} N_{i} \cdot f_{D,i}}{L \cdot \varepsilon_{i} \cdot Br} \bullet D^{0} \rightarrow K^{-}\pi^{+} \qquad 3.80 \pm 0.09\% \\ D^{0} \rightarrow K^{+}\pi^{-} \qquad (1.48 \pm 0.21) \times 10^{-4} \\ D^{*+} \rightarrow D^{0}\pi^{+} \qquad 67.7 \pm 0.5\% \\ D_{s}^{+} \rightarrow \phi \pi^{+} \qquad 9.1 \pm 0.6\% \\ D_{s}^{+} \rightarrow \phi \pi^{+} \qquad 3.6 \pm 0.9\% \\ \phi \rightarrow K^{+}K^{-} \qquad 49.2 \pm 0.7\%$$

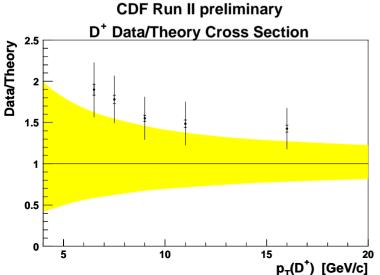



Differential Cross Section Results

Theory curve from M. Cacciari and P. Nason: Resummed perturbative QCD (FONLL)







Ratio of Data to Theory

- Data higher than theory, but not inconsistent with uncertainties
- Data and theory have similar shape

DØ *b*-jet Cross Section (Run II)

- Use muon-tagged calorimeter jets to calculate the bjet cross section
 - b-jet = hadronic jets carrying b flavor
 - b flavor detected through semileptonic B decays to muons
 - Jet detected by energy deposited in $\Delta R = 0.5$ cone

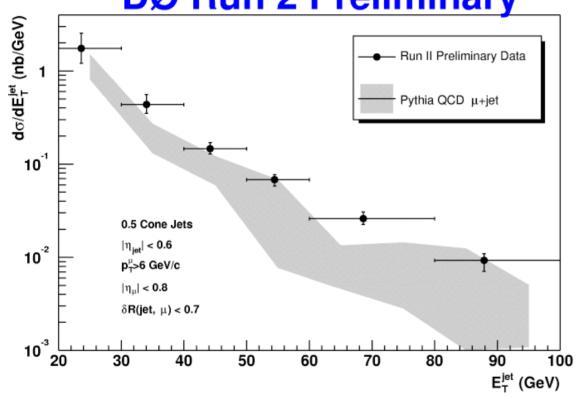
Motivation

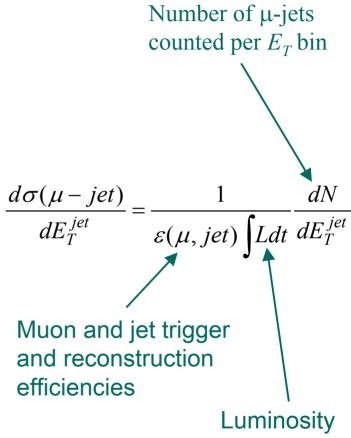
- Complementary to b quark and B hadron cross section measurement
- Jets are observable while quarks are not
- Not as sensitive to fragmentation and decay models as quark or hadron measurements

Similar analysis published in Run I

Analysis Overview

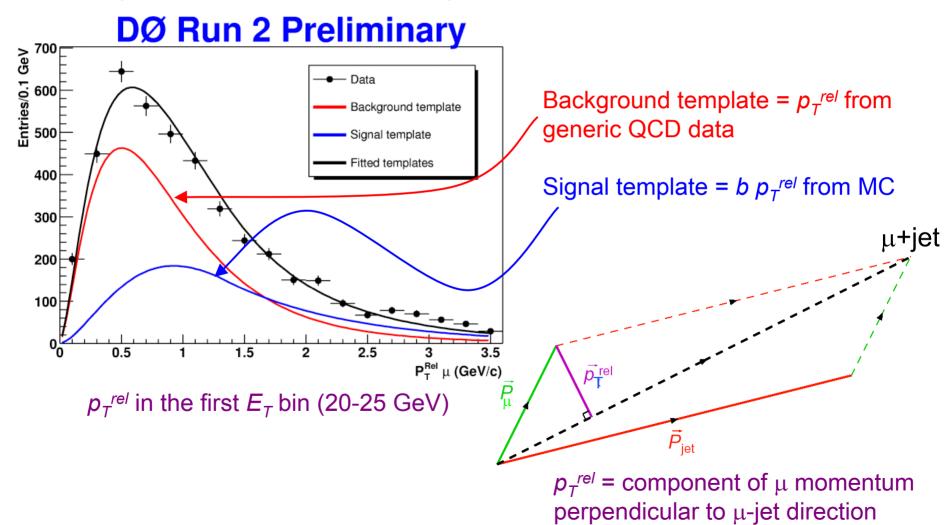
- Select jets containing muons
 - Use 3.4 pb-1 of Run II data (1.96 TeV, 02/28/02-05/10/02)
 - Data selection and kinematic cuts:
 - Jet cone of $\Delta R = 0.5$
 - $|\eta^{\text{jet}}| < 0.6$
 - $E_{\tau}^{\text{jet}} > 20 \text{ GeV}$
 - $|\eta^{\mu}| < 0.8$
 - $p_{\tau}^{\mu} > 6 \text{ GeV/c}$
 - $\Delta R(\text{jet}, \mu) < 0.7$
- Measure μ + jet cross section
- Extract b-content using p_T^{Rel}
- Correct for jet energy resolution and b-jet acceptance




μ + jet Cross Section

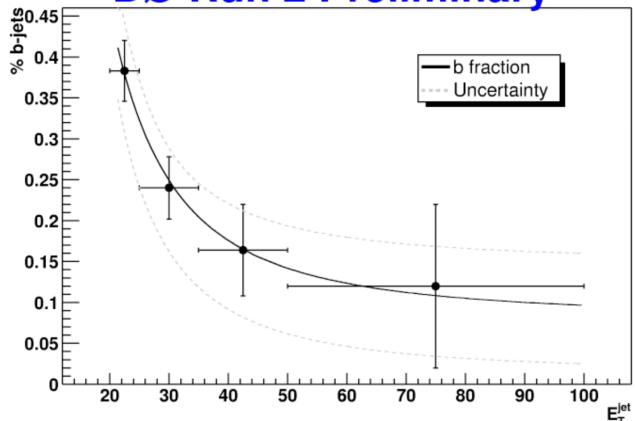
b-jet fraction not unfolded

DØ Run 2 Preliminary



Measuring *b*-jet Fraction

Fit the p_T^{rel} distribution in each E_T bin to extract the b-jet component

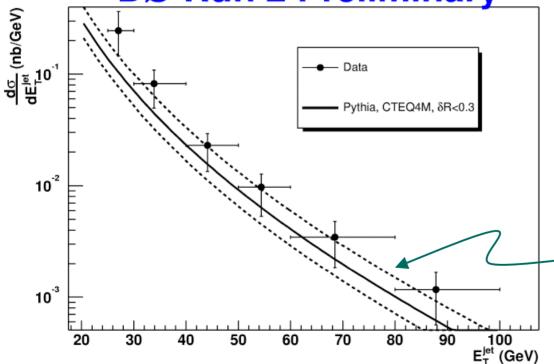


b-jet Fraction as a function of jet E_T

of bins constrained by statistical limitations of background templates

fitted with functional form: a + b/E_T^{jet}

b-jet Cross Section Results



μ-jet cross section, accounting for b fraction and E_{τ} unsmearing

 $\frac{d\sigma(b-jet)}{dE_T^{jet}}$ $d\sigma_b(\mu-jet)$ $2 BR(b \rightarrow \mu) \cdot A(E_T)$ dE_{T}^{jet}

Branching ratio

from PDG

Muon tagging acceptance

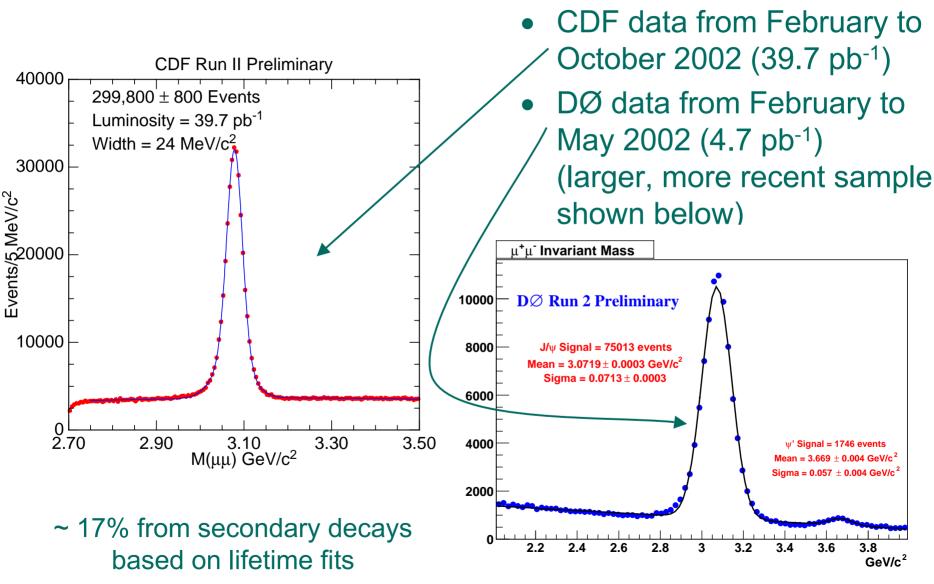
Dominant experimental

error from jet energy scale

band covers uncertainty due to:

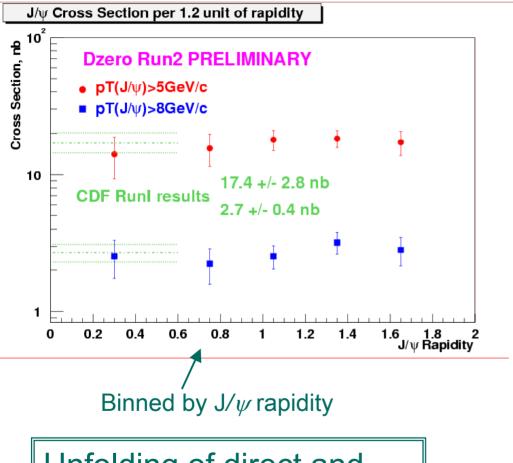
- b-quark mass
- Renormalization/factorization scales
- PDF's
- Fragmentation functions

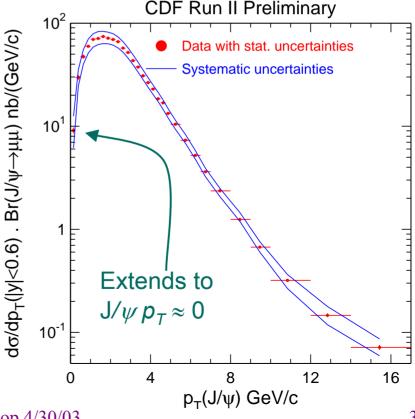
DØ and CDF J/ψ Production (Run II)



- Main production mechanisms at Tevatron
 - Direct QCD production cc̄ bound states (described by non-relativistic QCD models)
 - Secondary decays from B hadron production
- $J/\psi \rightarrow \mu\mu$ (BR \approx 6%) is easy to trigger on
- Motivation for measuring J/ψ production:
 - Probe regions not measured in Run I
 - Low p_T
 - Intermediate pseudo-rapidity, $0.6 < |\eta| < 2.0$
 - Further investigations of b quark and B hadron production cross sections

Large, Clean Data Samples




Inclusive Cross Sections Measured

Unfolding of direct and secondary contributions in progress

Includes both direct and secondary decays

Summary

B Hadron Correlations

- Higher order production mechanisms important at Tevatron
- Flavor excitation and gluon splitting needed in PYTHIA and HERWIG to model data

Heavy Flavor Cross Sections

- Direct charm cross sections measured at CDF
- Bottom-jet cross sections measured at DØ
- Expect more to come!

• J/ψ Production

- Inclusive cross section measured
- Unfolding of contributions from direct and secondary production in progress